

Learning Objectives

After viewing the presentation, attendees will be able to:

- Discuss the science behind why and how HVAC refrigerants are evolving.
- Summarize the drivers behind the new regulations & legislation for HVAC refrigerants.
- Discuss the actions being taken globally (*via the Kigali* Amendment to the Montreal Protocol) Compare & contrast current & next-generation refrigerant options, in terms of environmental impact, efficiency & safety.

Understand the facts today; plan for tomorrow

		15 I aken	Product	GWP of rehigerant in product	Date
ective: April 16 th 201		Reduction from Basefine (%)	Stand-alone medium-temperature refrigeration system	1,400	Jan. 1, 2020
willer all	3019	10		1.000	1
	2524	40	kaw-temperature	1,500	Jan. 1, 2020
1000	2930	10	refrigeration system		
	2014	40	Centralized	2,200	Jan. 1, 2020
Restrictions:	3/234	81	refrigeration system		
Industrial Re	frigeration		Condensing unit.	2.200	Jan. 1, 2020
Phase-out of	of $GWP > 22$	200 by 2020	Chillens	750	Jan. 1, 2025
Transport Re	efrigeration of GWP > 22	: 200 by 2025	Mobile refrigeration system	2,290	Jan. 1, 2025
HVAC Chille Phase-out of	rs: of GWP > 7 5	50 by 2025	Motor vehicle eli-conditioning (MVAC)	150	Jan. 1, 2021 model year of vehicles
ote: The overall phase down so consumption allocatio	aligns with Kigali. T ons are imports.	here is no production in Canada,	Domestic rehistention	150	Jan 1 2025
ww.ammonia21.com/articles	s/8284/canada_put	ts_hfc_phase_down_plan_in_force	Excession for quinters	1885	own classes
Canada	Commi	ttod. Datifior	and Postri	ctions in D	lace
Carlaua	Coniinii	ueu. Nauneu			

E	J	Low Pressure	paono		Medium	Pressure	
	R-123	R-1233zd	R-514A	R-134a	R-513A	R-1234yf	R-1234ze
Flammability	Non (1)	Non (1)	Non (1)	Non (1)	Non (1)	Signt Mills	Slight 444
Taxicity#	Neither	Neither	Neither	Neither	Neither	Neither	Neither
Fluid Efficiency	9.4 COP	9.3 COP	9.4 COP	8.5 COP	8.3 COP	8.2.COP	8.5 CDP
and the second se			Colorado a		Same	CH Later	3531.064
Capacity Change		35% Gain	Same		Same	379 6053	
Capacity Change GWP	1 79	-35% Gan	<2	1300	573	1	1

